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ABSTRACT

This report presents the results of a program conducted to
investigate the characteristics of a three-spool turboshaft
engine having an unconventional turbine arrangement. 1In
this engine, called a three-spool reverse-flow turboshaft
engine, the combusted air passes through the high-pressure
(HP) turbine, then the power turbine, and finally through
the low-pressurs (LP) turbine. The performance, weight,
envelope, and transient characteristics of this engine
were compared to those of a more conventional two-spool
turboshaft engine of comparable life and component tech-
nology. In addition, the suitability of the three-spool
reverse~flow turboshaft engine for recuperation was
assessed.

The results of the study indicated that the three-spool
reverse-flow turboshaft engine provides better part-power
specific fuel consumption (SFC) than the two-spool engine.
However, the engine is sensitive to ambient temperature
variations, and some of the performance advantage must be
compromised by flat-rating the engine to minimize the hot-
day power lapse. The flat-rated reverse-flow engine designed
for this study produced 5 percent lower SFC at 60 percent
power (4000 ft, static, standard-day conditions) than its
two-spool counterpart. However, it is somewhat heavier, has
a slightly larger envelope (length and diameter) and higher
power-output speed, and requires approximately 3 seconds
longer to accelerate from flight idle to 95 percent MRP.

The reverse~flow engine component arrangement is well suited
for an integrated recuperator. Also, the part-power temper-
ature and airflow of this engine result in approximately 18
percent lower cruise SFC than a comparable recuperated two-
spool engine.
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FOREWORD

The work described in this report was a joint effort by two
divisions of The Garrett Corporation. The design and analysis
of the three-spool reverse-flow turboshaft engine were con-
ducted by the Torrance, California, division of AiResearch.
The Phoenix Division of AiResearch was responsible for the
analysis of the two-spool engine, as well as for overall
program management.

The program was sponsored by the United States Army Aviation
Materiel Laboratories under Contract DAAJ02-69-C-0089, Task
1G162204A01409. Mr. L. T. Burrows and Mr. P. Chesser of
USAAVLABS were the technical monitors for the program.
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1. INTRODUCTION

Projected Army aircraft propulsion requirements indicate

a need for dependable lightweight turboshaft engines in
the range of 500 to 2000 shaft horsepower. Part-power
performance for helicopter propulsion systems in particular
has become particularly important since the hot-day, alti-
tude, and hover requirements imposed on these craft result
in engine operation at low power settings for a significant
portion of the normal mission.

To achieve engine performance commensurate with these mili-
tary requirements, civil and military research and develop-
ment efforts are being directed toward both component- and
cycle-improvement studies. Preliminary studies with an un-
conventional component arrangement indicated that improved
performance characteristics couldl be obtained for multi-
engine helicopters where low part-power fuel consumption is
of prime importance. In this engine (shown schematically in
Figure 1), air is compressed in a two-spool compressor, com~
busted, and then passed in order through the HP turbine,
power (free) turbine, and finally through the LP turbine.
This arrangement, designated as a three-spool* reverse-flow
turboshaft engine, is similar to the component arrangement
used in the Model ATF3 Turbofan Engine currently under
development by AiResearch Los Angeles, a division of The
Garrett Corporation.

The objective of the analytical study reported herein was to
investigate the operating characteristics of the three-spool
reverse~flow turboshaft engine and to assess the inr’' ~rent
differences between this engine concept and a more conven-
tional two-spool turboshaft engine (shown schematically in
Figure 2) of comparable technology. The perforr:nce, tran-
sient characteristics, control requirements, weight, and en-
velope of the two engine configurations were compared. In
addition, the suitability of the three-spool reverse-flow
turboshaft engine for recuperation was also assessed.

For brevity in this report, the abbreviation "35=-RF-TSE" will
be used for "three-spool reverse-flow turboshaft engine” and
the "two-spool turboshaft engine" will be abbreviated as
"2S-TSE."

The engines selected for this study were designed with the
same life and component technology. Moreover, both were

initially designed to operate at maximum turbine inlet temper-
ature (TIT) at military rated power (MRP) for sea-level,

* -Sometimes desjgnated "two-and-a-half-spool" rather than
"three-spool."

-
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static, standarc-day conditions. However, as the study pro-
gressed and the unique throttling characteristics of the
3S-RF-TSE were defined, the following changes were incorpo-
rated:

1, The design-point of both engines was changed to
4000-foot, static, 95°F-day conditions in order to
minimize the hot-day power lapse of the 3S-RF-TSE.

2. The rotating speed of the 3S-RF-TSE high-pressure
(HP) spool was reduced by 10 percent to extend its
life to a level comparable with that of the 2S-TSE,
since the initial assumptions used to evaluate tur-
bine life (i.e., part-power temperature, rotating
speed, etc.) were shown to be invalid.

The sequence of events described in this report parallels the
study as it was conducted. A flow diagram illustrating the
individual tasks of the study is shown in Figure 3. Subse-
quent sections of this report describe the activities con-
ducted to fulfill these tasks and the results of the analysis.
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2. COMMON ENGINE TECHNOLOGY

The comparison of the 3S-RF-TSE and the 2S-TSE was based on
equivalent engine life and component technology. The tech-
nology used, including compressor and turbine performance,
turbine material properties, and turbine cooling effective-
ness, was projected to represent !eveis attainable for small
engines following a 3-year develc;ment program (i.e., approx-
imately 1972). The component technology and the cycle as-
sumptions used for initial performance and design studies are
discussed in the following paragraphs.

2.1 INITIAL DESIGN-POINT SEILECTION

Based on preliminary cycle performance studies, a cycle pres-
sure ratio (P/B) of 16 and a turbine inlet temperature (TIT)
of 2400°F were selected for both engines. This combination

of TIT and P/P represent technology development 3 years hence
as stipulated at the outset of the study and, as will be shown
later by the results of the final cycle performance studies,

a compromise between maximum specific shaft horsepower and
minimum specific fuel consumption (SFC). An engine airflow of
6.5 pound- per second was used for sizing the engine layouts
and establishing component performance.

2.2 COMPRESSOR TECHNOLOGY

The compressor configuration and nondimensional off-design
performance maps used for the 3S-RF-TSE were scaled and
modified (to account for size) versions of those used for the
Model ATF3 Turbofan Engine. This configuration consists of a
five-stage axial LP compressor and a single-stage centrifugal
HP compressor. Because of the relative location of these
compressors (see again Figure 1), an annular inter-compressor
duct connects the LP compressor and the HP compressor. A
similar compressor configuration (five-stage axial plus a
single-stage centrifugal) was used for the single-spool gas
generator of the 2S-TSE.

Efficiencies and P/P's of the axial and centrifugal compressors
were selected to reflect the capability and limitations imposed
by specific speed, stress, and inlet conditions available for
each spooling arrangement. Compressor performance and desian
data for both engines are presented in Table I. These per-
formance data are also indicated on Figure 4, which shows
compressor adiabatic efficiency versus P/P with lines of con-
stant polytropic efficiency. Design-point performance of
other compressors is also indicated on this figure for compari-
son purposes.



TABLE I. COMPRESSOR PERFORMANCE SUMMARY

3S-RF-TSE 2S-TSE

Five-Stage Axial Compressor

P/P 6.0 6.4

NACT' rpm 34,560 40,800

Unp» ft/sec 1265 1240

Inlet hub-to-tip ratio, RH/RT 0.73 0.61

"poLY’ % 88.3 8755

"AD’ % 84.1 82.8
Single-Stage Centrifugal Compressor

P/P ‘ 2.67 2.5

Npcp+ TP 75,000 40,800

Ups ft/sec = 1725 1620

Inducer hub-to-tip ratio, RH/RT 0.54 0.692

"POLY’ L] 85.7 85.2

Nap’ % 83.5 83.1
Overall Compressor

P/P 15.55 16

"poLY’ % 87.4 88.0

*
NAD’ % 79L'3 80.0

* Efficiency is based on inlet and exit conditions and there-
fore includes the effects of the inter-compressor duct
pressure loss and temperature rise.
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The following items are of interest from Figure 4:

l. Since polytropic efficiency is somewhat indicative
of compressor technclogy, it can be noted that the
axial compressor performance reflects the advanced
state of the art for these small flow compresscrs,
with polytropic efficiencies greater than 87 percent.
However, the inlet conditions and specific-speed
restrictions imposed on the centrifugal compressors
limit the polytropic efficiencies of these compres-
sors to levels comparable to the current state of
the art, as indicated by the other compressor data
shown.

2. Efficiencies of the individual compressor components
are higher for the 35-RF-TSE because each rotating
group is free to rotate at whatever speed will pro-
vide the optimum compressor and/or tuarbine effi-
ciency (limited only by stress considerations). The
compressors on the 2S-TSE are, of ccurse, coupled,
which requires a compromise in speed by each com-
pressor component in order to provide for the high-
est overall compressor performance.

3. Even though the performance of the individual com-
pressor components is higher for the 3S-RF-TSE, the
overall compressor performance is penalized by the
pressure drop in the inter-compressor duct and by
the temperature rise that results as the flow passes
over the hot section. Thus, the overall compressor
efficiency is 0.7 point lower than that of the
2S-TSE compressor.

A definition of compressor surge margin was required for the
transient and off-design studies. The surge margin defini-
tion used for these studies is expressed in Equation (1).

Surge (P/P)surge x (wa zg)operating
margin T\ . x (W_ /8) y ~1.0 %0.04 (1)
operating a —3 surge / o¥

]

where gompressor P/P

P/P
waﬁ% corrected flow
N

7

corrected speed




2.3 COMBUSTOR TECHNOLOGY

Combustor technology used for the study is summarized in
Table II. The radial temperature profile (referenced to the
turbine inlet) is shown in Figure 5.

A slightly higher compressor discharge Mach number for the
3S-RF-TSE (MCD = 0.187 versus 0.172 for the 2S-TSE) resulted

in a combustor pressure drop of 4.7 percent compared to 4.0
percent for the 25-TSE.

TABLE II. COMBUSTOR TECHNOLOGY SUMMARY

3S-RF-TSE 25-TSE
AP/P, % 4.7 4.0
n, % 99.0 99.0
Pattern factor* (Circumferential) 0.16 0.16
T”“, = T
* Pattern factor = T — QVG
AVG CD

0.20 | . } 1
o
g o0.16 szt
9 R
> : Eietases, o8
3 0.12 $ it i
S

0.08 H ae |
8 T - +H
5 : EFFECTIVE (T - Tpu) _“i
o OF PATTERN = pr—nli 3
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Figure 5. TIT Radial Prcfile.



2.4 TURBINE TETHNOLOGY

The turbine flow paths and cerodynamic design-point perfor-
mance were obtained from computerized tecnniques based on
AiResearch and NASA correlations.* Efficiency levels pre-
dicted by the correlations account for blading losses only
(eerodynamic efficiency) and do not include the losses attrib-
utable to rotor-tip clearance and divergence within the

stage. Thus, the aerodynamic efficiencies from the correla-
tions were modified by the use of Equations (2) and (3) to
account for rotor-tip clearance losses and divergence, re-
spectively.,

R
n with = n without 1.0 --JE clearance K) (2)
clearance clearance RM RT RM

NOTE: 1. With unshrouded blades, K = 1.7 - 2.0, With
shrouded blades, K = 1.0. Thus, shrouded
blades are penalized less by clearance, but
their base level of efficiency (without clear-
ance) is usually lower.

2. The effect of clearance should be applied to
euach stage to adequately account for reheat.

A .
n with = n without 1.077 - 0.077 F=X4E (3)
divergence divergence inlet
where Aexit = stage exit annulus area, sq in.
Ainlet = stage inlet annulus area, sq in.

A summary of the turbine design and performance data is pre-
sented in Table III. A two-stage LP turbine was required to
drive the LP compressor. Thus, the turbine section of the
3S-RF-TSE contains five axial turbine stages compared to four
axial stages for the 2S-TSE turbine. The extra turbine stage,
as well as the lower expansion ratio, resulted in a l.8-percent
higher overall turbine efficiency for the 3S-RF-TSE. A more
detailed description of the turbine design philosophy is
presented in Section 3, Conceptual Design Studies.

*¥Stewart, Warner L., Warren J. Whitney, and Robert Y, Wong, A
Study of Boundary Layer Characteristics of Turbomachlne Blade
Rows and Their Relation to Overall Blade Loss, ASME Trans.,
J. of Basic Engr., Paper No. 59-A-23; 19590.

10
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TABLE III. TURBINE PERPORMANCE SUMMARY
35-RF-TSE 28-TSE
Pirsi econd Pirst Second

Turbine Comoonent Stage Stage Stage Stage
HP Turbinew
Inlet corrected flow, W, -/% (lb/sec} 0.922 - 0.903 -
Npcpr TPm 75,000 - 40,800 40,800
Stator aspr >t ratio, —E—RT RH 0.56 - 0.43 0.62

X
Rotor blade height (RT - RH) s in. 0.400 - 0.400 0.700
Rotor tip clearance, in. 0.015 - 0.015 0.015
Rotor hub-to-tip ratio, RH/RT 0.795 - 0.902 0.831
Stage P/P 1.81 - 2,07 2.07
Stage divergence (Aexit - Ainlet)/

Ainlet 0.23 - 0.11 0.48
Velocity ratio/stage, UM//§gJAE 0.67 - 0.61 0.61
Nppe ¥ 87.9 - S 85.0%*
Maximum allowable disk stress, psi 80,000 - 80,000 80,000
Power Turbine

/8

Inlet corrected flow, Wa =< (1b/sec) 1.645 - 3.43 -
NACT' pm 46,000 46,000 34,450 34,450
Stator aspect ratio, -T—RT RH 0.75 2.34 1.30 2.30

X
Rotor hub-to-tip ratio, RH/RT 0.75 0.7¢ 0.72 0.59
Stage P/P 1.71 1.71 1.87 1.87
Velocity ratio/stage, Uu/lggJAE 0.63 0.65 0.65 0.68

- - L 2 - L 3 ]
Nyt ) 89.7 92,2
LP Turbine
Inlet corrected flow, W, ig (1b/sec) 4,56 - - -
NAC'r' rpm 34,560 34,560 - -
Stator aspect ratio, -R—T-—cﬁ 2,66 3.50 = =

X

Rotor hub~-to-tip ratio, RH/RT 0.675 0.545 - -
Stage P/P 1.57 1.57 - -
Velocity ratio/stage, Uu/ligJAE 0.70 0.70 - -
Apeqt % - 91,90** - -
Qverall
Do s ) 91.0 89.3

*Data applies to the gas generator turbine of the 2S-TSE.

**Combined two-stage efficiency. 1

11



2,5 ENGINE LIFE AND TURBINE COOLING FLOW

Both engines were designed for a minimum life of 5000 hours
with the mission profile shown in Table IV. An accumulative
damage law [Equation (4)]) was used to transform this mission
profile into an equivalent time at MRP for evaluating turbine
cooling-flow requirements.

TABLE IV, MISSION PROFILE ,
MRP Percent Engine Life
(%) . at This (%) Power
100 10 3
75 15
60 " 60
35 10
5 (idle) 5
n k.

Equivalent time = minimum engine life x LIFEMRP x X

i
LIFE. (4)
i=1 i

where

Minimum engine life = 5000 hours

LIFEMRP = stress-rupture life at MRP
ki = portion of mission f%ﬁ required for each

step of the mission profile

stress-rupture life at each step of the
mission profile

LIFE,

Several iterations were required to finally evaluate the
equivalent life and cooling flow. Part-power cycle per-
formance data were necessary to determine the cycle param-
eters affecting life (stress and temperatures) at each
step in the mission profile. Also, special considerations
were required to minimize the hot-day power lapse for the
3S-RF-TSE (discussed in Section 4.3).

12




The calculation procedure used for evaluating equivalent life
at MRP and turbine cooling flow is outlined in Paragraph

2.5.1. TIT radial profile, cooling effectiveness

correla-

tions, and stress-rupture properties used for these calcula-
tions are presented in Figures 5, 6, and 7, respectively.
The resulting cooling-flow requirements for the two engines

are presented in Table V.

TABLE V. TURBINE COOLING-FLOW REQUIREMENTS
3S-RF-TSE 2S~-TSE
(% Wa) (% Wa)
irst vane, W 2.0 2.0
ca
irst blade, wca 3.0 2.8
econd vane, Wca 1.2 1.2
econd blade, Wca 0.8 1.6
eals, disks, and shrouds, Wca 342 3.2
TOTAL 10.2 10.8
0.7 S Sssaesassassstacatonss T
| CHOKED FLOW
0.6 i
0.5 BEEti e
] k HiH
el BLADE
0.4}
1 1 | .
m)| @ E
s g‘ 0.3 =2 e
& f‘ § T ng! VANE--TOTAL TEMPERATURE AT MID-SPAN i
o 0.2 N BLADE--RELATIVE GAS TEMPERATURE [
: s AT MID-SPAN
T'I METAL TEMPEBATURE AT MID-SPAN
0.1 T.,! INLET COQLING-AIR TEMPERATURE
0 Tttt - - b s s e U L e e

0 l.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

COMPRESSOR W a’ %

Figure 6. Vane and Blade Cooling Requirements.
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2.5.1 Engine Life Calculation Procedure

The steps for evaluating equivalent life at MRP and turbine
cooling flow are as follows:

1.

Define the following:
TIT

P/P

Compressor speed

at MRP

Gas generator speed
Turbine geométry
Stress-rupture properties

Maximum stator metal temperature = 1800°F
TIT radial profile

Correlation of cooling effectiveness (¢)* versus
cooling flow

Estimate the equivalent life at MRP based on the
mission profile.

Calculate cooling flow (first pass) for rotors
based on an assumed equivalent life.

*¢=

4, Estimate a total turbine cooling flow and calculate
off-design performance to define the following at
each step in the mission profile:

TIT
Tep
Rotor blade stress

5. Determine rotor metal temperature at each step in
the mission profile using the cooling flow at MRP.

6. Based on the metal temperature from Step 5 and the
stress from Step 4, determine a new equivalent life
at MRP using Equation (4).

7. Determine cooling flow in stators, rotors, shrouds,
disks, and seals (approximately) for the new
equivalent life.

8. Iterate from Step 3 for final cooling flow and
equivalent life.

Tgas - T

Tgas - Tca

15



3. CONCEPTUAL DESIGN STUDIES

3.1 LAYOUT

Conceptual engineering design drawings prepared for the
3S-RF-TSE and the 2S-TSE are presented in Figures 8 and 9,
respectively. Manufacturing and mechanical limitations are,
of course, inevitably associated with small, high-temperature,
high P/P gas turbine engines. Thus, the conceptual design
studies that were conducted for these engines are intended
primarily to indicate weight, envelope, and a general mechan-
ical feasibility of the engine concepts.

Rotating components were sized for sea-level, static,
standard-day conditions, TIT = 2400°F, P/P = 16, and airflow
= 6.5 pounds per second. Compressor and turbine geometry
and speeds were selected to provide optimum component per-
formance within the framework of the basic flow path.

Compressor design features are indicated in Table I. The
inlet hub-to-tip ratio on the 3S-RF-TSE axial compressor is
somewhat higher than for the 2S-TSE (0.73 and 0.61, respec-
tively) because the LP turbine that drives the compressor

has a large diameter and thus requires a low speed to avoid
excessive stress. Backward-swept blades were employed on the
centrifugal compressors to extend their range and provide the
required speed match with the turbine. Somewhat higher leak-
age is encountered with the 3S-RF-TSE in order to thrust-
balance the LP spool. As the air flows through the inner
compressor duct, its temperature increases by 12 degrees as a
result of heat transfer from the hot combustor/turbine sec-
tion. 1In addition, it encounters a 3.0-percent loss in total
pressure.

The characteristics of the 3S-RF-TSE compressor are such that
the surge margin available is adequate for all throttle set-
tings and transient conditions without the assistance of
either variable geometry or bleed. Variable stator geometry,
however, was required for the 2S-TSE compressor. A cursory
study indicated that a 15-degree closure below 90 percent
speed would yield satisfactory surge-margin characteristics.

Combus tor volume was selected to provide restart capability
to an altitude of 25,000 feet. Modular designs were employed
on both engines to permit access to the hot section to facil-
itate inspection and component replacements. Vaporizer-type
fuel nozzles are illustrated on the 2S-TSE layout and an
atomizer-type nozzle on the 3S-RF-TSE.

16
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The combination of low airflow and high cycle P/P results in
a small annulus for the HP turbine, and tip-clearance effects
severely penalize performance. A minimum blade height of
0.400 inch was used, along with a tip clearance of 0.015
inch. For the 2S-TSE, where large disk bores were required
for the concentric power shaft, split fabricated HP turbine
disks were employed with internal passajes for blade cooling.
An allowable tangential disk stress of 80,000 psi was assumed
for both designs.

The turbi .es were designed around the constant mean-line con-
cept. Appropriate speeds, diameters, and blade chord lengths
were selected to produce acceptable values of aspect ratio,
hub-tip ratio, etc., as previously delineated in Table III.

A higher power-spool speed was selected for the 3S-RF-TSE
(46,000 rpm versus 34,450 rpm for the 2S-TSE) in order to
select a diameter for optimum transition between the HF and
the LP turbines

In order to minimize the divergence loss through the power
turbine second stage for the 2S-TSE, an interstage diffuser
was employed. Even though it created a 1l.5-inch increase

in the length of the engine, it was deemed advisable in order
to obtain the quoted performance.

Particular attention was required for the design of the ex-
haust diffuser and turning cascade in the 3S-RF-TSE. To
mirimize the total pressure loss, the low-velocity LP turbine
exit flow is accelerated through the cascade from a Mach num-
ber of 0.35 to 0.45. The flow is then decelerated to the
exhaust-diffuser exit through four rectangular ducts with a
half-divergence angle of 7 degrees. This design provides for
a aynamic pressure recovery of 0.60 and a total pressure loss
of 4.5 percent (compared to 0.5 and 3.8 percent, respectively,
for the 2S-TSE diffuser).

Both layouts provide for power extraction at the forward end
of the engine. Because of diametral restrictions imposed by
the gas generator spool, inner shaft bearings were required
on the 2S-TSE to provide acceptable critical-speed charac-
teristics on the power shaft. The critical-speed character-
istics of the 3S-RF-TSE were found to be acceptable without
inner shaft bearings.

The control, starter, pumps, etc., are driven by, and thus
are located aft of, the HP spool on the 3S-RF-TSE. For the
2S-TSE, these components are driven by a tower shaft from
the gas generator spool and situated around the axial com-
pressor without affecting the engine envelope. A somewhat

19



similar arrangement could, of course, have been adopted for
the 3S-RF-TSE, but only at the expense of engine diameter
and mechanical complexity.

3.2 WEIGHT AND ENVELOPE

Engine weight and envelope were determined from the conceptual
layouts. Bare engine weight (dry, without accessories, con-
trol, etc.) was determined by multiplying the volume of each
component by the density of an appropriate material. Geo-
metrically similar (scaled) layouts were prepared for engines
having airflows of 4.0 and 9.0 pounds per second. Based

on these layouts, engine weight and envelope over this range
of airflows were determined. The results (shown in Figure

10) indicate that the 3S-RF-TSE is somewhat larger and heavier
than the selected 2S-TSE configuration having the same air-
flow.

While the envelope differences are small, the weight of the
3S-RF-TSE is greater than that of its two-spool counterpart,
with sone of the weight increase attributable to (a) the
bearing and support requirements for the third spool, (b) the
additional turbine stage required for the LP turbine, and

(c) the annular inner compressor duct.

20
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4. PERFORMANCE

Based on the technology and assumptions presented in Section
2, parametric cycle performance studies were conducted for
the two engire configurations. The final design point was
selected to optimize part-power performance while minimizing
hot-day power lapse. Off-design performance studies were
conducted for various ambient conditions to determine the
effects of throttling, altitude, flight speed, and ambient
temperature. An in-depth study of the reverse-flow cycle

thermodynamics was conducted to explain the unique performance

characteristics that result from an engine having the compo-
nent arrangement.

4.1 CYCLE PERFORMANCE STUDIES -

Parametric cycle performance studies were conducted for the
two engine configurations representative of the 4.0- to 9.0-
pound-per-second airflow range covering cycle P/P's of 10.0
to 20.0 and TIT's from 2000°F to 2500°F. The following
assumptions were used for these parametric studies:

1. Standard, sea-level, static conditions

2. Compressor efficiencies (polytropic) = constant

3. Turbine efficiencies (adiabatic) = constant

4. Total pressure and leakage losses = constant

5. Turbine cooling flow = f(P/P and TIT)

6. For the 3S-RF-TSE LP compressor and HP compressor,
P/P's were varied as shown in Table VI.

TABLE VI. COMPRESSOR P/P VARIATION FOR CYCLE STUDIES

(P/P)cycle (P/P)LP corpressor (P/P)HP compressor
10.0 - 16.0 3.67 -~ 6.0 2.67 (constant)
16.0 - 20.0 6.0 (constant) 2.67 - =33

Component performance, duct losses, assumptions, etc., used
for these studies are presented in Table VII.
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TABLE VII. CYCLE ASSUMPTIONS
35-RP-TSE 28-TSE
Inlet
wa, lb/sec 6.5 6.5
Pressure drop, AP/P (%) 0 0

Axial Compressor
P/P

"poLy’ *
Inner Compressor Duct

Pressure loss, AP/P (%)
Temperature rise, AT (°F)

Centrifugal Compressor
P/P
"pory’ *

Overall Compressor

p/P

Combus tor
Pressure diop, AP/P (%)
n o, %

:4 LHV,** Btu/lb

Hl' Turbine
Npops ¥
TIT, °F

Turbine Duct
Pressure drop, AP/P (%)

Power Turbine
Np-ps 3

LP Turkine
nT_T ’ %

3.67 - 6.0 5.07 - 6.72
88.3 87.5

2.9 -
12.0 =

2.67 - 3.33 1.97 - 2.98
85.7 85.2

10.0 - 20.0%10.0 -~ 20.0

3.0 1.5
4.7 4.0
99.0 99.0
18,400 18,400
87.9 85.1

2000 - 2500 2000 - 2500

2.0 2.0
89.7 92.2
91.9 =
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‘TABLE VII - Continued

3S-RF-TSE 2S5-TSE
Exhaust Duct
Pressure drop, AP/P (%) 4.10 3.80
Exhaust nozzle, P/P 1.06 1.02
Mechanical Losses
Accessories, bearings, etc., hp 9.75 9.75

QE/E = (P/P)LP compressor X[ (7R

**Lower heating value.

HP compressor’

24



The results of the MRP paramctric studies for the 3S-RF-TSE
and the 2S-TSE are shown in Figures 11 and 12, respectively.
These figures present specific shaft horsepower versus SFC
for lines of constant-cycle P/P and TIT, For comparison, the
envelope of the 3S-RF-TSE parametric study from Figure 11 is
superimposed on that of the 2S-TSE in Figure 12, While the
results are relatively coincidcnt because of the comparable
ccmponent technology used for the two engines, the 2S-TSE MRP
performance is somewhat better (displaced toward lower SFC
and higher specific shaft horsepower) at lower P/P's because
of inherently lower pressure losses and thrust-balance leak-
age than in the 3S-RF-TSE. The shapes of the constant-
temperature and P/P lines are different for the two engines
because of increasing significance of the unique losses in
each cycle., For example, consider a constant temperature
line (TIT = 2000°F) with varying cycle P/P from Figure 1<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>